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Abstract 

Irreducibility of W,‘(X) for d > g - h + 1, where X is a curve of genus g which admits 
a degree two map onto a genera1 curve C of genus h >O, is shown. Also the existence of a 
base-point-free pencil of relatively low degree on a k-gonal curves has been proved. @ 1998 
Elsevier Science B.V. All rights reserved. 
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0. Introduction 

The aim of this paper is to study some properties of linear systems and the locus of 

linear systems on a complex projective algebraic curve which is a covering of another 

curve. 

In Section 1, we prove the irreducibility of the W,‘(X) for all d > g - h + 1 on a 

curve X of genus g which is a double covering of a general curve C of genus h > 0. And 

this result is sharp in a sense; see Remark 1.6. In the proof of Theorem 1.1, we use the 

equivalence of the irreducibility of W,‘(X) and the connectivity of W,‘(X), if Wdl(X) 

has the positive expected dimension and is non-singular in codimension one [7]. We 

also use the so-called Castelnuvo-Severi inequality for a double covering X of genus y 

over a curve C of genus h; every base-point-free gt on X is a pull-back of a gA12 on C 

for any n 5 g - 2h (cf. [ 1, Ch. 31). 

In Section 2, we consider a problem of base-point-free pencils of certain degree on a 

k-gonal curve as well as on a curve which is a double covering of a genus two curve. 
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In proving the main results of Section 2, we use enumerative methods and computations 

in H*(C,, Q) of various sub-loci of the symmetric product C, of the given curve C. 

Specifically, we compare the fundamental class of Ci := {D E C,: dim/D1 > l} with 

the class of all irreducible components of CJ whose general elements correspond to 

pencils on C with base points. This argument works because the latter components are 

all induced from the base curve of the covering and Cl has the expected dimension. 

Throughout, we work over the field of complex numbers. 

1. Irreducibility of W:(X) for double coverings 

In this section we prove the following theorem. 

Theorem 1.1. Let X be u smooth ulgebraic curve of genus g which admits a two 

sheeted covering 71 :X 4 C onto a general curve C of genus h > 0, y > max {2h*, 5h+3} 

=: E(h). Then the variety W,‘(X) of pencils of degree d on X is generically reduced 

and irreducible with the expected dimension for all d > g - h f 1. 

Before starting to prove Theorem 1.1, we begin with the following preparatory 

remarks and lemmas whose proofs can be found in the related literature. 

Remark 1.2 (Coppens; [4, Theorem 41). Let X be an algebraic curve of genus y. Sup- 

pose that y(X) has the expected dimension, i.e. dim W;(X) = p(d, g, r) := y - (r + 1) 

(g-dfr). Then dim w&,,(X)=p(d+l,g,r) and w&,,(X) is irreducible (resp. reduced) 

if Wd”(X) is irreducible (resp. reduced). 

The following is a well-known criteria for the irreducibility of Wdr(X) which follows 

from [7], Remark 1.8. 

Lemma 1.3. Let X be a smooth ulgebraic curve. Suppose thut 4;‘(X) has the ex- 

pected dimension p(d,g,r) >O and that the codimension of the singular locus 

Sing W&(X) is at least two. Then W&(X) is irreducible. 

We also need the following dimension theoretic statement for e22; [5, Theorem 3.3. I]. 

Lemma 1.4. Let X be a smooth algebraic curve of genus g. Let n E N, y > 2(n + 1 )2 

anddimW,\,(X)<l. Then dimWd(X)<2d-6-gfor g-n<d<y. 

We also have the following weaker proposition, which is an intermediate step toward 

the proof of Theorem 1.1 and we will prove Proposition 1.5 after finishing the proof 

of Theorem 1.1. 
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Proposition 1.5. Let X be u smooth algebraic curue qf’ genus g which udmits a two- 

sheeted covering 711.X’ + C onto a general cwve C of’ genus h >O, g > 5h - 2. Then 

the variety W,‘(X) qf’pencils of degree d > g - h + 1 on X is generic@ reduced and 

u general element of any component of W,‘(X) is base-point-jiee. 

Proof of Theorem 1.1. We first claim that I+&+, (X) is equi-dimensional of the ex- 

pected dimension p(g - h + 1, g, 1) = g - 2h. Indeed, in [3, Lemma 1.21, it is proved that 

I&(X) has the expected dimension if g 2 4h. Hence, the same is true for FI$lh+,(X) 

by Remark 1.2. Therefore, by Remark 1.2 it is sufficient to prove the theorem only for 

w,‘,+,(X). 
By a result of Mayer [9], one has Sing (W,‘,+,(X)) 1 W,Th+,(X). We now claim 

that dim lI$Lh+, (X)<p(g-h+l,g,l)-2=g-2h-2: Suppose h=2e+l is oddand 

take n = h - 1 = 2e. Then by the Castelnuovo-Severi inequality, one has 

@&Y = w,:+,(x) = r* w,!,(C) + w,(X). 

Because C is general, dim K$, (C) = P(e + 1, h, 1) = - 1. Therefore, dim Fi3(X) = v) 

and hence dim I&(X) < 1. By taking d = g ~ h + 2 in Lemma 1.4, one has 

dim Il&+, (X)IdimW,<,,+&Y)<2(g-h+2)-6-g=g-2h-2. 

Suppose h = 2e and take n = h - 1. Again by CastelnuovoSeveri inequality, one has 

I!+, = w,~~,Z(~) = n* w,:,(C). 

Since C is general dim W,:,(C) = P(e + 1, h, 1) = 0 and hence dim W,\,(X) = 0 < 1. By 

taking d = g ~ h + 2 in Lemma 1.4, one also has 

dim F&+,(X) i dim I+&+#) < 2(y - h + 2) - 6 - g= 9 - 2h - 2 

and this finishes the proof of the claim. 

Now, suppose that Sing l&+,(X) has codimension at most one in II$+,(X). By 

the above claim we may also assume that Sing F?&+,(X) > F$+,(X) b A, where A 

is an irreducible closed subvariety of I+$+, (X) such that dim A > g - 2h - 1 and 

A q y:,+,(X). We break up the proof into the following two cases. 

(i) Assume that a general element of A has no base point, and choose L E A a 

general element. Since L E Sing II&h+, (X) and by the base-point-free pencil trick, one 

has 

dim TL ~~h+I (X) = dim(Im ,uo)’ = g - 2h + dim Ker ,UO 

=g-2h+h”(X,KL-2)>dimW,]h+,(X)=~-2h, 

where ~0 : H”(X, L) ~3 H”(X, KL-’ ) + H”(X, K) is the usual cup-product map; this fol- 

lows from a general theory of special linear series (cf. [2, Proposition (4.2), p. 1891). 

Therefore, h”(X, KL-*) >0 and hence KL-2 E W&-h(X) for general L E A. We then 
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have 

which is contradictory to the genus bound 9 2 c(h). 

(ii) Assume that A c K&(X) + WI, i.e. a general element of A has a base point. 

Note that dim A = g - 2h - 1 since I&,+, (X) is generically reduced by Proposition 1.5. 

Because dim W,\,(X) = g - 2h - 2,’ there exists a component Y of W,‘,(X) such that 

A=Y+&(X), dimY=g-2h-2. 

(ii-a) Suppose Y is not of the form Y’ + W,(X) for some Y’ c W,‘,_,(X). Then 

a general A4 E Y is base-point-free and M @ O(p), p EX general, has only one base 

point p. By the base-point-free pencil trick applied to the cup-product map 

Ker ~0 ” H”(X, KMP2 8 C( -p)) # 0 since M @ G(p) E A c Sing W,Lh+,(X). Therefore, 

we have KMP2 @ C(-p) E W&s(X) for general A4 E Y and p E k. From this we get 

an inequality 

which is contradictory to the assumption that y > c(h). 

(ii-b) Suppose Y is of the form Y’ + W(X) for some Y’ c b&,(X). We claim 

that Y is of the form rc*(E,!~,(C))+ I#_h_n(X) with C:/,(C) a component of W,,!,(C), 

where n is even and 2[(h + 3)/2] <n < 2h + 2. 

Proof of Claim. Because Y is of the form Y’ + W,(X) for some Y’ c W,:,_,(X), Y 

is a component of W&,(X) whose general element has a base point. Then Y = CA + 

W,&n(X) for some n, 0 <n 5 g - h - 1, where EL is a subvariety of W,‘(X) and a 

general element of CA is base-point-free. We will first argue that n is relatively small 

compared to g. Because Y has dimension g - 2h - 2, one has dim CA= n - h - 2, 

otherwise 

g-2h-2=dimY=dim(C~+W&_,(X))#(n-h-2)+(g-h-n) 

= g - 2h - 2. 

Let L be a general element of Ci. By the standard description of the Zariski tangent 

space to the variety Wdr, we have 

dim(Im ~0)~ = dim TL(C,!,) > dim CA > IZ - h - 2, 

where ~0 : H’(X,L) @ H”(X, KL-' ) + H”(X, K) is the usual cup-product map. By the 

base-point-free pencil trick, we have, 

dim(Im ~0)’ = g - dim(Im ~0) = g - h’(X,L)h’(X, L) + dim(Ker ~0) 

=g-2(g-n+ 1)+h”(X,KLP2)=ho(X,L2)-3>>-h-2. 
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Hence, h”(X, L2) > n -h + 1 which implies WGPh (X) > n-h-2. By reducing to pencils 

we have 

dim wnih, I (X) = dim W,&_,,(X) > n - h - 2 + (n ~ h - 1) = 2(n - h) - 3. 

Note that IZ < 9 ~ h ~ 1, thus n + h + 1 < g. We consider the following two cases: 

(1) If n + h + 1 = y, then by passing to residual series 

dim I%+ I (X)=diml&2(X)=g-2>2(n-h)-3++g<4h+3, 

contradictory to the genus bound g > e(h). 

(2) If n+h+ 1 Ig- 1, we have, 

2(n - h) - 3 <dim I+$,+, (X)<(n+h+ l)-2- 1 H?zn33h+ 1 

by Martens’ well-known theorem (cf. [2; IV, Theorem 5.11). Thus, n < 3h + 1 5 Q - 2h 

by the genus bound g 2 c(h), and again by the Castelnuovo-Severi inequality every ele- 

ment of CA is a pull-back of a g,tj2 on C, i.e. CL = r~*(C:,~(c)), where CA,,(C) is a com- 

ponent of IJ$(C). Since dim CA =dim z*(C$,(C)) = dim(Zl12(C)) = dim( F,!,(C)) = 

n-h -2 I h, we have n I 2hf2, and [(h + 3)/2] I n/2 since C is general. This finishes 

the proof of the claim. 

We next claim that !z~(X,(~C*N)~~)=!Z~(C,N @‘)=n-hfl for NE C&(C) general, 

2[(h + 3)/2] <n < 2h + 2: Since C is general, II$(C) is reduced at a general point 

NEC,!.,(C), hence h”(C,N@2)=n-h+l. Suppose that h”(X,(7r*N)@*)>ho(C,NQ2), 

i.e. rt*f?‘(C,N _ @‘) CH’(X,(~E*N)@~). Then it follows that the complete linear system 

(n*N) @’ is not composed with 71. Thus, X has a base-point-free gi which is not 

composed with rt, x < deg (rc*N)@’ - (n - h)=2n - (n - h)=n + h<3h + 2 by 

subtracting n - h generically chosen points on X. But this is contradictory to the 

Castelnuovo-Severi inequality since g > s(h). 

Now consider a general M E Y = r~*(Z$~(c))+ II_h_n(X), and M @ O(p) E A = Y+ 

4 (X), p EX general. Then M = rc*N 8 C(pl t.. + ps-h-#) and M @ C(p) = TT*N c;’ 

(“(PI f. + py-h-n + p), where N E C,ri2(C). Applying the base-point-free pencil trick 

to the cup-product map ~0 :HO(X,M @ 6’(p))@H”(X,KkP’ @6,(-p)) +HO(X,K), 

one has Kerpo EH’(X,K c?~(x*N)@-~ 63 [‘(-PI -. . . pcj-h-n-p)). On the other hand, 

from the previous claim /z’(X, (rt* N) @ 2, = n - h + 1 and hence h”(X, K @ (rr*N ) 3 -* ) 

=g-n-h. Since ~1,. . . , pg-h-n, p EX have been chosen generically, we have 

dimKer PO = h’(X,K C3 (n*N)’ -’ @ C(-PI - . . . pg_h_n - p)) = 0. But this is con- 

tradictory to the fact that M @ Cr( p) E Sing w,lh+, (X), i.e. dim Ker ,u~ > 0. 

So far, we have shown that Sing Tkh+, (X) has codimension at least two in 

l&+,(x). By [7, Remark 1.81 we finally conclude that W,‘,+,(X) is irreducible. 

We now finish the first section with the proof of Proposition 1.5. 

Proof of Proposition 1.5. By Remark 1.2, it is enough to prove Proposition 1.5 for 

d = y - h + 1. Let C be a component of FI$th+, (X) whose general element has a base 
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point. Set C=CL + II&_h+l_-n (X) for some n <g - h, where CA is a subvariety of 

K’(X) whose general element is base-point-free. Hence, dim CA = dim C ~ (g ~ h + 

1 -n)=n-h- 1. Let LECf, be general. Then dimT,$A>dimCA>n-h- 1, and 

hence by the base-point-free pencil trick, 

dim(Im ~0)’ = g - h”(X,L)h’(X,L) + dim Ker pt, 

=y-2(y-n+l)+hO(X,KL-2)=hO(X,L2)~3>n-h- 1. 

Then ho@‘, L*) = n - h + 2 for general L E E!, and, hence, dim WG-‘+’ > n - h - 1. By 

taking off (n - h) general points on X, we have, 

dim W,:,(X) 2 2(n - h) - 1. (1.5.1) 

Note that n + h < g and we distinguish the following two cases. 

(i) If n + h = g, dim W,‘(X) = dim II&z(X) = y - 2 > 2(n - h) - 1 = 2(g - 2h) - 1, 

which is contradictory to the genus bound g > 5h - 2. 

(ii) If II + h<g - 1, 2(n -h) - 1 Idim&‘+h(X)<ti + h - 3 by (1.5.1) and by 

Martens theorem. Then by the genus bound g > 5h - 2, n 5 3h - 2 5 y - 2h and 

hence by Castelnuovo-Severi inequality, one has CA c rr*( FJ2(C)). On the other hand, 

dim W,j2(C)=n-h-2 since, C is general. Hence, n-h-l =dimCL <dimr~*(T,)~(C)) 

= n - h - 2 which is a contradiction. And this proves that a general element of any 

component of W,‘(X) is base-point-free. 

For the generically reducedness of W,‘,+,(X), we only need to compute the dimen- 

sion of the Zariski tangent space TLK&+, (X) at a general L. Suppose dim T, W,i,+, 

(X) = dim(Im p,,)’ >dim W,‘,+,(X) = 9 - 2h for a general L E I&,+,(X). L being 

base-point-free, it follows that h”(X,KLe2) > 1 for general L E I&+,(X) by the base- 

point-free pencil trick. Then we have g - 2h 5 dim v,k,+,(X)‘< dim W&-4 = 2h ~ 4, 

which is contradictory to the genus bound g > 5h - 2. 0 

Remark 1.6. (i) Note that the result of Theorem 1.1 is sharp. Indeed, in the course of 

the proof of Theorem 0.1 in [3], it has been shown that I&,‘,(X) is reducible for the 

double covering X of a general curve C. 

(ii) We proved Theorem 1 .l under the assumption that C is a general curve of 

genus h. In fact, we only need the condition that the schemes W,‘(C) satisfy the 

expected dimension and emptiness from BrilllNoether theory. 

2. Existence of base-point-free pencils on k-gonal curves 

In this section, we consider a problem concerning the existence of complete base- 

point-free pencils of certain degree on a k-gonal curve as well as on a curve which 

admits a double covering onto a curve C of genus 2. We first remark the following 

general fact which has been known already (cf. [6, Theorem (2.2.2), Corollary (2.2.3) 

and Theorem (3.1)]). 
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Remark 2.1. On a general k-gonal curve C of genus g, 3 < k < [(g + 3)/2], there exists 

a complete base-point-free pencil g: on C such that 2gf, is non-special for any n E N 

with g/2 + 1 5 n < g. Furthermore, if k > 3 and g/2 + 1 5 n 5 g - 1 then there exists a 

primitive complete gf, on a general k-gonal curve. 

For an arbitrary given k-gonal curve admitting a simple gi, we have the following 

preliminary theorem. 

Theorem 2.2. Let C he u k-gonal curve of’ genus g > (3k - 6)(k - 1) with a simple gi. 

Then there exists u complete base-point-free pencil of degree n for any n > g + 2 -k. 

For the proof of the above theorem we need to invoke the following theorem of 

Coppens concerning the variety of special linear systems on algebraic curves [4]. 

Theorem 2.3 (Coppens [446]). Let C be an algebraic curve of genus g. Jf 

dimW,‘(C)=d-2-jfor Some j+3<d<g- 1 -j (j>O) andg>(2j+I)(,j+l) 

then dim $s(C) = 1. 

Lemma 2.4. Let C be u k-gonul curve of’ genus g, g > (2k - 5)(k ~ 2). Suppose thut 

dim 4’(C) = 0. Then 14$_k(C) has the expected dimension g - 2k + 2 = p(g + 2 - 

k, g, 1). 

Proof. Suppose dim W$_-k(C) > g - 2k + 3 and set dim W,:,_,(C) = (g + 2 - k) - 

2 ~ j. Then j 5 k - 3’ and the numerical hypothesis in Theorem 2.3 is satisfied for 

d = g + 2 -k. Thus, if g > (2k - 5)(k - 2), dim M$s(C) = 1 contrary to the hypothesis 

Y’(C)=O. 0 

Proof of Theorem 2.2. Since the existing gi is simple and by the assumption on 

the genus g, gi is unique. Clearly W,‘(C) + &+z-~k(C) is an irreducible component 

of %::2-k (C), by Lemma 2.4. Let w&_~ be the fundamental class of K$2_k(C) in 

J(C), the Jacobian variety of C and let cu be the class of W,‘(C)+ &_-2k(C). Because 

Ff$LZ_-k(C) is of pure dimension p(g + 2 ~ k,g, 1) by Lemma 2.4, one can compute 

the class c~&_~; Theorem (1.3) in [2, p. 2121. Also the class o can be computed by 

Poincare’s formula; [2, p. 251. Hence we have 

y‘;+2-k = 
1 

k!(k - l)! 
0Zkp2 and o= (2k! 2j!d2k-2’ 

where 0 denotes the class of the theta divisor in J(C). Thus, 

,~;+*_kd~-2k+2 = k!(k 1 02k-2u”-2k+* = 1 )! k,(k 1 = 1 ), 0” k,(kg! 1 ), 

+ ,0”-2k+2 = ‘” I 

(2k - 2)! = (2kt 2)!’ 
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On the other hand, we remark that I$:2_k (C) is reduced at a general point A := g: @ 

O(d) of W,‘(C) + &_2k(C), (?(d)~ I&-2k(C); this follows from the description 

of the tangent space to l$2_k(C) at A (cf. [2, Prop. (4.2) p. 1891) and the fact that 

h”(C,KA~2(4)) = 0, which can be computed easily, or from a remark at p. 189, after 

Theorem 4, in [4]. Therefore, we deduce that there exists a component in R$Z_k(C) 

other than the component W,‘(C)+ &-2~_+2(C), hence U;;:,_,(C) is reducible. We will 

now show that W,‘(C)+ &2k+2(C) is the only component of l+$i,_,(C) whose general 

element has a base point. Let r be a component of Ti2_k(C) whose general element 

has a base point. Then r = &’ + Ct;;+2_k_c(C), k 5 e < g + 1 -k, where 4’ is a compo- 

nent of W,‘(C) whose general element is base-point-free. Assume e # k. We first note 

that dimc,‘,‘e-k otherwise 2(g+ 1 -k)-g=p(g+2-k,g,l)<dimr=dimc’+ 

dim &+2_,_,(C) < e - k - 1 + (g + 2 - k - e) = g + 1 - 2k, which is absurd. Let L 

be a general element of r,‘. Again by the description of the Zariski tangent space to 

4’ at L, dim(Im ~0)’ = dim TLI;,’ 2 dim 4’ > e - k, where ~0 is the usual cup-product 

map with respect to L. On the other hand, by the base-point-free pencil trick we 

have 

= 2e - 2 - g + h”(C,KL-2). 

Hence, h’(C, L2) > e - k + 3, which implies Wz-k+2(C) > e - k. 

By recalling the fact that dim W&-,‘(C) > dim W:(C) + 1 we have 

dim W,!+’ (C) > dim Wzz-kt2(C) + e - k + 1 

>(e-k)+(e-k+ 1)=2(e-k)+ 1. 

We want to apply the Martens’ dimension theorem to this situation: We first note 

that e I g + 1 - k and hence e + k - 1 < g. 

(i) In case e + k ~ 1 = g, by passing to the residual series, dim W,$_ I (C) = dim 4-2 

(C) = g - 2 > 2(e - k) + 1 and hence g L 4k - 5, contrary to the assumption on the 

genus g. 

(ii) In case e+k- 1 <g- 1, we have 2e-2k+l <dim W,‘+,_,(C) 5 (e+k- 1)-2- 1 

and hence e < 3k - 5. Since gi is simple and g > (k - 1)(3k - 6) this is a contradiction. 

Thus, the only possibility is e = k. Since II$2_x(C) is reducible, there exists com- 

plete base-point-free pencils of degree g + 2 - k on C corresponding to elements of 

components other than W,‘(C) + &_2k+2(C). 

For any n with g + 2 ~ k 5 n 5 g, by the excess linear series argument [8], it follows 

that dim lI$‘(C) = p(n, g, 1) = 2(n - 1) - g. Thus there exist complete base-point-free 

pencils g~,g~_l,...,g$+z_-A. 0 

In the next theorem, we proceed one step further to obtain the following result of 

the existence of complete base-point-free pencil of degree g + 1 -k on a k-gonal curve 

with a simple g:. 
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Theorem 2.5. Let C be u k-gonal curve with a simple g: of genus g > z(k2, 2k - 2) 

where z(d,r) := m(d - 1 - i(m + l)(r - I)), m = [(d - 1 )/(r - I)]. Then there exists 

a complete base-point-free pencil qf degree g + 1 - k. 

Proof. First note that I$\, _k(C) cannot have the expected dimension; otherwise 

g+ I -2k<dimWk’(C)+dim&_~k(C)I~(g+ 1 - k,g,1)=2(g- k)-g. One 

can then apply Theorem 2.3 to show that dim J4$_k(C) = g + 1 - 2k, which implies 

W,‘(C) + P&+,-X(C) is indeed a component of J4$i,_-k(C). Also one can follow the 

argument as in the proof of (2.1.1) of [6] to show that W,‘(C) + PJ$+,-2k(C) is the 

only component of dimension g + 1 - 2k. 

On the other hand, one can show that W,‘(C) + &+, _2k( C) is the only component 

of w’ y+,_-k( C) whose general element has a base point by using the same argument as 

in the proof of the assertion that e = k in the previous theorem. Thus it remains to 

prove that W,:, _k(C) is reducible, which will complete the proof of the theorem. 

Assume that PJ& (C) is irreducible, i.e. W$_x- (C)= W;(C) + R&-X(C). For 

any g - k2 + 2k - 3 points on C, say, PI . . . Prl_-k~+2k_3, one apparently has 

I(k - 1 kl: + PI + . . + &k2+2k--31 E ~$‘,CC, 

= K- n;;L (c> = K - (w,‘(c) + n;;+1-2k(C))> 

where k denotes the point on the Jacobian J(C) corresponding to the canonical divisor 

K on C. Thus there exists Q,, . . . , Q4+1 -2k on C such that 

dimjkD+ PI + ... +<(,_,z+~,_~I = dimlK - Q, - ... - Q,+,_ln] 

=2k-2+dim~Q,+...+Q,+,-2,~>2k-2, (2.5.1) 

where D~gi. On the other hand, if h’(C,(K -kDI)=h”(C,IkDI)+g-k2 - l<g- 

k’ + 2k - 3 then there exists RI,. . . , Rg_-k~+2k_3 E C such that dim1 K - kD - RI - - 

Ru-~~+2~--31 = - 1 and hence dimIkD + RI + . .. + Ry_-kz+2k_31 =2k - 3. But this is 

contradictory to the inequality (25.1). Therefore we have dimlkD1 > 2k - 2. Let ,f be 

the morphism of degree m onto a curve C’ of degree k2/m in P” associated with IkDl 

where a = dim]kDl > 2k - 2. By the Riemann-Roth theorem applied to the induced 

series of degree k2/m and of dimension c( on C’, we have 2k - 2 < a 5 k2/m, whence 

m<k. SincedimIkg:-gA]=dim](k-l)gi]>Othemap C-P’ givenbytheg: factors 

through ,f. By the assumption that gi is simple we must have m = 1, i.e. J’ is birational. 

Then by the well-known Castelnuovo’s genus bound we have g < $k2, 2k-2) contrary 

to the hypothesis on the genus g. 0 

In the following proposition, we turn to the problem concerning the existence of 

base-point-free pencil of degree g - 2 on a double covering of genus two. It should be 

said that the fact is known and proved in the appendix of [5] with a little bit higher 

lower-bound on the genus of the given double covering. As we shall see in the proof 

of the proposition, we use a proof completely different from the one in [5]. And our 

present proof improves the lower bound on the genus of the given curve a little bit, 
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which could not be detected by the argument in [5]. We also remark the fact that 

Proposition 2.6 is not a special case of [3, Theorem 0.11; in [3], the base curve of the 

covering is a general curve, whereas our base curve in Proposition 2.6 is an arbitrary 

curve of genus two. 

Proposition 2.6. Let C be u smooth curve of genus g > I 1, which is a double covering 

of a curve of genus 2. Then there exists a base-point-jiee pencil of degree g-2 which 

is not composed with the given double covering. 

Proof. We first recall some of the notations used in [2]. Let u : Cd *J(C) be the abe- 

lian sum map and let 0 be the class of the theta divisor in J(C). Let U* : H*(J(C), Q) + 

H*(&q-_2, Q) be the homomorphism induced by U. By abusing notation, we use the 

same letter tl for the class ~“0. By fixing a point P on C, one has the map I : Cd- I + Cd 

defined by z(D) = D + P. We denote the class of I(&_] ) by x. 

Let rr : C 3 E be the 2-sheeted covering, genus(E) = 2. By the various Martens and 

Mumford type dimension theorems on the subvarieties of J(C), it is easy to show 

that R&(C) is of pure dimension g - 6 = p(g, 1, g - 2), hence the subvariety Cl;_2 of 

c,_, is of pure dimension g - 5. Also it is easy to show that the only components 

of M$,(C) whose general element has a base point are ?r*(W,‘(E)) + U;;_,(C) and 

n*(W3’(E)) + &_s(C) and hence the only components of Ci_2 consisting of divisors 

whose complete linear series have base points are 7c*(Ej) + Cc,-6 and z*(Ei ) + C’,_, 

whose class in C:_2 we denote by y and y respectively. Because C& is of pure (and 

expected) dimension p(g-2,g, l)+l, the class “i-z of Ci_, is known (cf. [2, Theorem, 

p. 3261); CA-~ = (03/6) - (x02/2). Note that y and 11 occur with multiplicity 1 in Ccj_2, 

i.e. Cj_2 is reduced at general points of x*(E~)+C~,_~ and z*(E:)+C,_x; this follows 

from the description of the tangent space of the scheme Cs (cf. [2, Lemma (1.5), 

p. 1621) and the fact that h”( C, K - 20 - A) = 0 where D E n*(El ) and A E C,_, 

general (or DE rr*(Ei) and d E C,_, general), which can be computed easily. 

Let us also recall that given a cycle Z in Cd, the assignments 

Z H&(Z) := {E E Cd+k: E - D ) 0 for some DE Z}, 

ZHBk(Z):={E~Cd_k:D-E>O for some DEZ} 

induce maps 

Ak : @“(cd, a) +H2m(Cd+k, a), Bk : H2”(cd, 0) ---$ H2+‘k(Cd-k, Q) 

and the so-called push-pull formulas for symmetric products hold (cf. [2, p. 367-3691). 

Thus by the push-pull formulas 

B,_&@) = (g - 5)x and 4-8(X 
y-5) = (Y - 5XY ; 6&I - ‘&3. 

Denoting y” and ij by the classes of n*(Ej) in CJ and of x*(Ej) in C,, respec- 

tively, we will now check that (7 . x)c, = 1 and (6 x3)c6 = 1, i.e. y” and x (resp. ij 
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and x3) intersects transversally in CJ (resp. Ce). Let D E jj fix general. Under the nat- 

ural identification between To(G) and H”(D,&(D)), the tangent space TO(X) is the 

kernel of H”(D, &D(D)) + H”(P, Q(D)) with P the point defining x. One also has 

To(y) = {s E H”(D, &J(D)); Z(s) E n*(El)}. Since jj = n*(Ei ) = gi is a base-point-free 

pencil, one finds that T,(x)n T,(F) = (0). For 6 and x3, define x3 using PI, P2, P3 

with different images on C and fix D’ E fi nx 3. Again by noting that the tangent 

space TD,(x~) is the kernel of H”(D’,O~~(D’))-+Ho(P~ + P2 + P3,Gb,++9+5(D’)) and 

To,(Q) = {s E H’(D’, &y(D’)); Z(s) E n*(E;)}, one finds that Tor(x3) n Tp($ = (0). 

Since (fi x3 )c, = 1 and (1; . x)~ = 1, we have 

(y xyqq2 = (Ay-h(‘;;) xg-5)&z = (f . B,_fj(X”-5 ))c, = (? (Y - 5)x)c; = CI - 5 

and 

(g - 5)(g - 6)(g - 7jx3 > (9 - 5h - il 6)(g - = = ,x3 
6 

ccl 
6 

71til )(, 
0 

_ (g - 5)(g - 6)(g - 7) 
6 

On the other hand (ci_* x”-~)c,_~ = ((e3/6 - x0*/2) X-5)(.11-2 = g!/6(g - 3)! - 

g!/2(y - 2)! by the Poincare’s formula. 

Comparing the above intersection numbers we have 

( ‘r’ Qqc<,~: + (q . x”-5)c;,mz <(& xqc.‘,mz 

and this shows that there exists a component other than n*(Ei) + C,_, and rr*(El) + 

C-s in Cl-* which in turn proves the existence of a divisor of degree g - 2 which 

moves in a complete base-point-free pencil and whose complete linear system is not 

composed with the given involution. 0 
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